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An emotion that has recently gained traction in the context of populism is nostalgia, a 
sentimental longing or wistful affection for the past. Nostalgia can refer to the past of 
one’s group or nation, as reflected in populists’ narratives of the heartland—the vision of 
a utopian future based on an idealized past in which their country belonged to the “pure 
people.” However, research on nostalgia in political communication across the political 
aisle is scarce. The current study aimed to fill this gap via supervised machine learning. 
First, we used an experimental approach established in psychology to create a ground-
truth data set and trained and evaluated a classifier for detecting nostalgic sentiment in 
the German language. We then applied this classifier to a large database (N = 4,022) of 
German political parties’ Facebook posts. We demonstrate that (a) populist (vs. non-
populist)—especially right-wing—parties employ nostalgia more frequently; (b) nostalgic 
narratives differ between parties, and (c) nostalgic (vs. non-nostalgic) posts are 
associated with more user engagement. 
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Populist leaders and parties have enjoyed substantial electoral success around the globe in the 
second decade of the 21st century. Examples include political leaders such as Marine Le Pen in France, 
Donald Trump in the United States, and Hugo Chávez in Venezuela, and parties such as Podemos in Spain. 
In Germany, the context of our study, the right-wing populist party Alternative for Germany (AfD) has 
become one of the strongest opposition parties in some federal states and even became the first-past-the-
post party in the states of Thuringia and Saxony in the federal election of 2021. 

 
There has been speculation about the role of social media in populists’ success (Engesser, Fawzi, 

& Larsson, 2017). Populist communication is often highly charged, fueling negative emotions (Schmuck & 
Hameleers, 2020; Wirz, 2018), which is rewarded by popularity cues such as likes and shares (Jost, Maurer, 
& Hassler, 2020). Consequently, the algorithmic-recommendation logic of social media rewards populist 
communication. 

 
An emotion that has recently gained traction in the context of populism is nostalgia—an ambivalent 

(albeit mostly positive) social emotion elicited by a sentimental longing for the past (Sedikides, Wildschut, 
Arndt, & Routledge, 2008). Nostalgia can refer to the past of one’s group or nation (Sedikides & Wildschut, 
2019). Former U.S. president Donald Trump’s slogan “Make America Great Again” exemplifies the use of 
this type of national nostalgia (Kenny, 2017). National nostalgia has been described as the “master-frame 
of populist radical right parties” (Smeekes, Wildschut, & Sedikides, 2021, p. 90). Yet, it is less clear whether 
and how political parties beyond single populist actors use nostalgia in their discourse. A notable exception 
in a Hungarian context (Szabó & Kiss, 2022) showed that right-wing populists use more nostalgic narratives 
in their Facebook communication than do left-leaning politicians. 

 
Populism 

 
The populist ideology is often defined as a “thin-centered” belief system (Mudde, 2004) around 

the core assumption that the good people are opposed to the malicious or incompetent elite, who fail to 
represent the people. This core assumption consists of three interwoven aspects: (a) anti-elitism, an 
antipathy toward political elites often accompanied by disappointment with legacy media and science 
(Mede & Schäfer, 2020; Schulz, Wirth, & Müller, 2020); (b) homogeneity assumptions, that is a 
homogenous conceptualization of “the people,” referring to them as inherently good (Engesser et al., 
2017) and as distinct from and opposed to “the others”; and (c) the vocal demand for people’s 
sovereignty, combined with the claim that elected representatives fail to execute the will of “the people” 
(Hameleers & de Vreese, 2020). Jointly, these three aspects are considered a serious threat to liberal 
democracies (Galston, 2020; Schulze, Mauk, & Linde, 2020). 

 
Closely connected to the homogeneity assumption is the concept of the heartland. The heartland 

is the “construction of an ideal world but, unlike utopian conceptions, it is constructed retrospectively from 
the past—it is, in essence, a past-derived vision projected onto the present as that which has been lost” 
(Taggart, 2000, p. 274). The heartland denies historical facts and romanticizes the past, focuses on national 
in-groups that are considered native, and divides the population against those who migrated later. In a 
nutshell, heartland represents: 
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the good life but that, unlike utopias, it is a life that has already been lived and so shown 
to be feasible. It assumes or asserts that there was a good life before the corruptions and 
distortions of the present. (Taggart, 2004, p. 274) 
 
The populist ideology is part of a larger populist communication logic (Engesser et al., 2017) that 

entails a political strategy (Weyland, 2016), specific actors (Aalberg & de Vreese, 2017), and an emotional 
communication style (Jagers & Walgrave, 2007). Negative emotions such as anger and fear in particular 
have been linked to populist communication (Molek-Kozakowska & Wilk, 2021), although positive emotions 
such as joy or hope are also prevalent (Schmuck & Hameleers, 2020). The affect-oriented design of social 
media provides unique opportunity structures for this type of populist communication (Engesser et al., 
2017). For instance, a content analysis of Facebook posts illustrated that the German right-wing populist 
AfD used the most populist message cues and that these cues were responded to with love and anger 
reactions among their audience (Jost et al., 2020). Evoked emotions, in turn, mediate the persuasiveness 
of populist appeals (Wirz, 2018). One emotion that is closely connected to heartland (Taggart, 2004), and 
thus might be of relevance to populists, is nostalgia (Menke & Wulf, 2021). 

 
Nostalgia 

 
Nostalgia is a sentimental longing for one’s past (Sedikides et al., 2008), a rose-tinted view of 

something that no longer is. It is a bittersweet, though predominantly positive, emotion triggered by 
personally meaningful memories such as those involving one’s childhood (Wildschut, Sedikides, Arndt, & 
Routledge, 2006). Nostalgia is a social emotion (Sedikides & Wildschut, 2019) that is commonly understood 
and experienced by lay people across cultures (Hepper, Ritchie, Sedikides, & Wildschut, 2012; Hepper et 
al., 2014). Nostalgia is prevalent across ages, albeit more so among older than younger people (Madoglou, 
Gkinopoulos, Xanthopoulos, & Kalamaras, 2017). 

 
Nostalgia confers several psychological benefits. For instance, recalling nostalgic (vs. 

autobiographical control) memories strengthens the sense of being loved and protected (Wildschut et al., 
2006). By fostering social connectedness (Sedikides & Wildschut, 2019), nostalgia galvanizes a sense of 
self-continuity (Sedikides, Wildschut, Routledge, & Arndt, 2015) and meaning in life (Routledge et al., 2011), 
which elevates well-being (Sedikides & Wildschut, 2018). 

 
Nostalgia can also be a group-based emotion triggered by the past of one’s in-group or country 

(i.e., collective nostalgia; Wildschut, Bruder, Robertson, van Tilburg, & Sedikides, 2014), such as rosy 
memories of one’s nation’s past (Smeekes, Verkuyten, & Martinovic, 2015). These (envisioned) collective 
memories form the basis of the heartland (Taggart, 2004). Collective nostalgia strengthens identification 
with the in-group (Smeekes et al., 2018), intentions to support the in-group (Wildschut et al., 2014), and 
favoritism toward the in-group (Dimitriadou, Maciejovsky, Wildschut, & Sedikides, 2019). Personal and 
collective nostalgia can be related. A thematic analysis of written nostalgic memories showed that collective 
memories, such as those elicited by historic buildings or movies about a distant past, are often interwoven 
with more personal stories, such as childhood memories of visiting historic places with one’s parents or 
listening to old songs (Holak & Havlena, 1992). 
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The social consequences of personal and collective nostalgia can differ. Personal nostalgia has benign 
effects on intergroup relations: Inducing nostalgia about interacting with an older individual or a mentally ill 
person reduces prejudice toward the group “elderly” (Turner, Wildschut, & Sedikides, 2018), while recalling 
nostalgic memories with an in-group member who lives as an immigrant abroad reduces prejudice toward 
immigrants in one’s own country (Gravani, Soureti, & Stathi, 2018). Collective nostalgia, in contrast, can have 
negative ramifications for intergroup relations (Sedikides & Wildschut, 2019). Specifically, it can fuel anger 
toward the outgroup and motivate collective action (Cheung, Sedikides, Wildschut, Tausch, & Ayanian, 2017). 
Particularly, national nostalgia predicts prejudice (Smeekes et al., 2015). 

 
Yet, people feel nostalgic for different aspects of their nation’s past. For instance, conservatives in 

the United States feel more nostalgic for a homogenous past, such as that reflected in the concept of the 
heartland (Taggart, 2004), whereas liberals feel more nostalgic for a time when their country was more 
open to cultural diversity (Lammers & Baldwin, 2020; Stefaniak, Wohl, Sedikides, Smeesters, & Wildschut, 
2021). Individuals who feel more nostalgic about an open (vs. homogenous) society are less prejudiced 
(Wohl, Stefaniak, & Smeesters, 2020). Similarly, Turks who waxed nostalgic for the Ottoman empire (vs. 
the time of Kemal Atatürk) manifested more populist attitudes (Elçi, 2022). 

 
Nostalgia and Populism 

 
Populists have been making use of nostalgic narratives in their campaigns. For example, right-

wing populist politicians have been described as capitalizing on collective nostalgia to discredit the 
current political order and promote anti-elitism (Mols & Jetten, 2014). Moreover, nostalgia such as 
reflected in the heartland concept is commonly employed to romanticize the past for ingroup-members 
(Smeekes et al., 2015). 

 
The heartland narrative is shaped by local context. Typical examples include “middle America” and 

“la France Profonde.” In Germany, the Nazi past overshadows a national heartland (Engesser, Ernst, Esser, 
& Büchl, 2016), but heartland narratives are found on the regional level, such as that related to the former 
German Democratic Republic (GDR; Menke & Wulf, 2021). For example, according to a discourse analysis, 
nostalgic reverie about the East German town of Dresden centering on its destruction by Allied bombing in 
World War II accounts for the far-right’s attraction to the city (Vees-Gulani, 2021). German right-wing 
populists particularly seem to thrive on local narratives. For instance, the geographical distance to Nazi 
concentration camps predicts the success of the AfD decades later on the municipality level (Jäckle, 2022). 

 
So far, research has tested the relation between collective nostalgia and populism via artificial 

prompts in experimental settings (Lammers & Baldwin, 2020; Stefaniak et al., 2021) or via qualitative 
analyses of single populist campaigns (Menke & Wulf, 2021). In an exception, Szabó and Kiss (2022) relied 
on qualitative content analysis to examine nostalgia in the Facebook posts of Hungarian politicians. Both 
personal and collective nostalgia featured in political communication. In addition, right-wing (compared to 
left-wing) candidates expressed more nostalgia. Finally, nostalgic (vs. non-nostalgic) posts elicited more 
emotional responses (e.g., likes, shares, emojis) from users. Building upon this work, we extend the 
literature on populism and nostalgia by employing supervised machine learning. 
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Supervised Machine Learning and Emotion Detection 
 

Supervised machine learning is a state-of-the-art approach recommended for the computational 
analysis of political communication (González-Bailón & Petchler, 2015; Stieglitz & Dang-Xuan, 2013). During 
supervised machine learning (see Figure 1), a statistical model is trained on a data set (called the ground-
truth) for which the researcher knows which items belong to which class (Burger, 2018)—for instance, which 
posts are nostalgic, and which are not. Based on the ground-truth, the statistical model learns in an 
exploratory phase the text features (“the predictors”) that characterize the posts within each class. Usually, 
a test-and-train logic via k-fold cross-validation is employed to identify the best model. Afterward, the best 
model is evaluated in confirmatory analysis of a hold-out evaluation data set to gauge the out-of-sample 
performance. If the performance is satisfactory, the classifier can be used to categorize new data (Scharkow, 
2013), although it should always be validated after the application (Song et al., 2020). 

 
The ground-truth data lie at the heart of the procedure, but scientific disciplines vary in the creation 

of these “gold standard” data. In computer science, the ground-truth data are usually annotated by three 
coders, who independently decide whether a text belongs to a certain class or not. The labels for the ground-
truth data are assigned based on majority votes. For instance, Azim and Bhuiyan (2018) annotated tweets 
using nine basic emotions as labels. Comparing different classifiers by relying on simple words showed that 
between 41.25% and 71.75% of the emotions were detected correctly. Similar rates were reported by 
Asghar and colleagues (2019). 

 

 
Figure 1. Typical procedure of supervised machine learning. 
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In communication science, the ground-truth data are typically human-coded data sets created via 
manual content analysis (Scharkow, 2013). For instance, Burscher and colleagues (2014) had trained coders 
rate a large set of news articles and parliamentary questions for included policy issues. Similarly, Stoll, 
Ziegele, and Quiring (2020) used a manually coded data set of user comments and trained different models 
to detect incivility and impoliteness. 

 
Recently, Çakar and Sengur (2021) implemented a different approach that did not rely on human 

coders. Participants selected one emotion that characterized best how they felt about the COVID-19 
pandemic, described this emotion in an essay, and rated the emotion’s strength. The self-reported emotions 
served as labels for the participants’ essays, which were then used to train the classifier. The classifier 
detected correctly between 63.7% and 75.7% of emotions. This use of self-report is compatible with 
psychological approaches. For instance, Meuleman and Scherer (2013) applied supervised machine learning 
on a data set for which participants recalled emotional experiences, labeled these experiences on a set of 
basic emotions, and rated the experiences on 25 items. Classifiers trained on these data performed better 
than chance. 

 
Here, we adopted the psychological approach capitalizing on essays and self-reported nostalgia as 

ground-truth. Emotional essays are classifiable by algorithms trained on Facebook posts (Jaidka et al., 
2020), and so it is plausible that essays can also be used to train Facebook classifiers. We evaluated our 
approach by applying manual validation (as is common in communication science) and statistical 
performance measures (developed in computer science). 

 
We formulated the following three research questions (RQs): 

 
RQ1: How prevalent is nostalgia in political communication across the political spectrum, that is, both by 

populist and non-populist parties? 
 
RQ2: How does the content of nostalgic narratives differ between parties? 
 
RQ3: How is nostalgia related to user engagement with political communication? 

 
Classifier Development 

 
To create a ground-truth data set, we used a vivid autobiographical writing task for the induction 

of nostalgia (Verplanken, 2012, based on Wildschut et al., 2006), a task well established in psychology. 
According to the cognitive-functional model of emotions (Nabi, 1999), media content that touches on an 
emotion’s core relational themes—its typical elicitors—triggers the respective emotion (de los Santos & 
Nabi, 2019; Nabi, 2002). Using a predefined set of elicitors to investigate emotions can rapidly become 
overly complex (Meulemann & Scherer, 2013). Our bottom-up approach (i.e., asking participants to 
write about their nostalgic memories) allowed us to capture variance in the themes of nostalgic 
narratives—variance that likely captures not only personal, but also collective and geographically 
situated memories. 
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Methods and Measurements 
 

We collected nostalgic essays in two experiments (NExp.1 = 295, 170 women and 125 men; 
NExp.2 = 261,179 women, 80 men, and two nonbinary). We randomly assigned participants to write about 
either a nostalgic memory (nExp.1 = 161, nExp.2 = 135) or a control memory (nExp.1 = 159, nExp.2 = 135) before 
they reported their state (i.e., subjective) nostalgia and answered some sociodemographic and other 
questions. All materials, training data, analysis scripts, and supplementary materials are openly available 
via the Open Science Framework: https://osf.io/gu92j/. 
 
Writing Instructions 
 

Given the relevance of locality for German populism (Jäckle, 2022), we aimed to collect memories 
on local contexts. In Experiment 1, participants in the experimental condition wrote about a nostalgic 
memory, whereas those in the control condition wrote about an ordinary memory, pertaining to their 
homeland. In Experiment 2, we replaced reference to participants’ “homeland” with reference to their “place 
of residence” to increase variance in nostalgic reveries. 
 
State Nostalgia 
 

Next, participants reported their subjective state nostalgia on three validated items (Wildschut et 
al., 2006; e.g., “Right now, I am feeling quite nostalgic”; 1 = not at all, 7 = very much). We aggregated 
responses to form an index (Cronbach’s ɑExp.1 = .96, Cronbach’s ɑExp.2 = .96). 
 
Database Construction 
 

A preliminary analysis (i.e., Welch’s t test) of Experiment 1 data showed that participants in the 
experimental (M = 4.63, SD = 1.83) and control (M = 4.26, SD = 1.82) condition did not differ significantly 
on state nostalgia, t(312) = 2.00, p = .08, although the means were in the expected direction. Memories 
about one’s homeland (German: “Heimat”) were imbued with nostalgia in both conditions. In Experiment 2, 
participants in the experimental condition (M = 4.90, SD = 1.69) felt more nostalgic than those in the control 
condition (M = 3.38, SD = 1.95), t(234) = 7.00, p < .001. Essays were thus collapsed across experiments. 

 
To ascertain that text classes in the ground-truth reflected the expression of nostalgia, we 

followed Çakar and Sengur’s (2021) procedure and focused on self-reported nostalgia as labels. 
Specifically, we labeled essays as “nostalgic” when state nostalgia was above the scale mean of 3.5 
(n = 363), and we labeled essays as “non-nostalgic” when state nostalgia was below the scale mean (n 
= 157). We excluded essays from participants with average levels of nostalgia to ensure class 
discrimination. Accordingly, class assignment in the ground-truth data was based on state nostalgia (for 
a comparison of this class assignment, which is based on self-reported affect, to human coders’ 
perception of the essays, see Supplementary Material S1: https://osf.io/vb4qu/). We excluded all essays 
with meaningless text (e.g., “fssdffz”), corrected all typos via Microsoft Excel’s spellcheck function, and 
transformed all text to lowercase for the final database. 
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Test and Training Split 
 

We used 80% of the data as training and 20% as evaluation data set. The purpose of this split 
was to separate the exploratory phase (training) from the confirmatory phase (evaluation), allowing for 
an estimation of the out-of-sample prediction error (i.e., the classifiers’ ability to predict new data 
correctly; Yarkoni & Westfall, 2017). In both data sets, more texts were labeled as nostalgic (70%) than 
control (30%). 
 
Feature Engineering 
 

Non-nostalgic essays (Mdn = 100 words) were shorter than nostalgic essays (Mdn = 132 words), 
Wilcoxon rank sum w = 16,458.00, p = .01, underlining the richness of nostalgic memories. We analyzed 
the essays’ linguistic content via the Linguistic Inquiry and Word Count dictionary (LIWC, Pennebaker, Booth, 
& Francis, 2007; Pennebaker, Boyd, Jordan, & Blackburn, 2015). Here, we employed a revised version of 
the German LIWC (Wolf et al., 2008), in which we removed category labels for 137 words (0.02% of all 
words) that had been identified by two human coders as not representing the respective category. We 
focused on the following theoretically derived categories: terms reflecting positive and negative emotions; 
personal pronouns; and references to friends, family, the past (Davalos, Merchant, & Rose, 2015; Wildschut, 
Sedikides, & Robertson, 2018), and space (e.g., locations). 

 
A series of two-sided Wilcoxon rank sum tests indicated that nostalgic (vs. non-nostalgic) essays 

did not include more negative emotions, w = 10,766,075.00, p = .99, but were more positive, w = 
10,640,910.00, p < .001. Non-nostalgic essays featured the pronoun “I” more often than nostalgic essays, 
w = 11,201,087.50, p < .001, whereas nostalgic essays referred more often to “we,” w = 10,533,337.50, 
p < .001 (see also Wildschut et al., 2018). Nostalgic essays were also more likely to mention the past, w = 
10,595,272.50, p = .003 (Davalos, Merchant, Rose, et al., 2015). All other ps > .20 (see Figure 2). 

 
Based on these preliminary analyses, we used single words (unigrams) as features to train our 

classifier. Although this bag-of-words approach is unsuitable for examining deeper argument structures, it 
does mirror typical manual content analysis focused on emotion detection (Heiss, Schmuck, & Matthes, 
2019; Schmuck & Hameleers, 2020). Also, terms for themes of nostalgia are likely to be similar in essays 
and political Facebook posts—for example, referring to one’s childhood and to the imagined ideal childhood 
in the heartland, respectively. 
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Figure 2. Relative frequencies of selected linguistic categories in the training data. 

 
Preprocessing 
 

We used the recipe package (Kuhn & Wickham, 2020) and the textrecipe package (Hitveld, 2020) 
to formalize the following preprocessing steps. First, we split the text into single words (tokenization; Benoit 
& Matsuo, 2020) and removed punctuation marks and numbers. We implemented the German stopword 
dictionary provided by the snowball package (Bouchet-Valat, 2020) to exclude words that are frequent in 
the German language, but have no interpretative value (e.g., “and” or “then”). To reduce the number of 
features, we removed words that appeared fewer than 10 times or more than 500 times. We expressed the 
remaining words (or tokens) as frequencies. To account for the larger number of nostalgic as compared with 
non-nostalgic essays, we used synthetic minority oversampling (Chawla, Bowyer, Hall, & Kegelmeyer, 
2002), which randomly increases minority examples of the training set by replicating them through linear 
interpolation and the k-nearest-neighbor algorithm. Oversampling increases the performance of supervised 
machine learning models when the data are imbalanced (Stoll, 2020). 
 
Classifier Training 
 

Following best practices in computer science (Hastie, Tibshirani, & Friedman, 2009), we compared 
four classifiers that are well established in text classification and suitable for small data sets (Forman, 2003), 
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involving the parsnip and discrim packages (Kuhn, 2020; Kuhn & Vaughan, 2021). We employed regularized 
logistic regression (Cooper, Gey, & Dabney, 1992) to detect linear associations in the data, random forest 
(Breiman, 2001) to detect nonlinear associations, and naïve Bayes (Lewis, 1998) and support vector 
machine (Suthaharan, 2016) to detect probabilistic associations. 

 
We tuned each classifier using grid search within the tune package (Kuhn, 2021) and tenfold cross-

validation. During cross-validation, the data are randomly split in k subsamples (here, 10), which are 
statistically recycled to serve either as training data or as test data to evaluate the out-of-sample 
performance, therewith identifying the optimal parameter solution for the classifier (Yarkoni & Westfall, 
2017). Performance can be evaluated using different statistical metrics. All of them rely on weighting the 
share of true positive cases (i.e., the nostalgic essays classified as nostalgic) and/or true negative cases 
against misclassifications (Burger, 2018). Here we used the f1 measure for tuning because this metric can 
handle imbalanced classes. The f1 measure represents the weighted average of precision (the share of true 
positive cases in all cases classified as positive) and recall (the share of true negative cases in all cases 
classified as negative). We further considered the detection of nostalgia (indicated by the recall or sensitivity 
measure, that is, the share of actual nostalgic essays among all essays classified as being nostalgic) as 
more relevant than the detection of expressions of non-nostalgic memories (indicated by the specificity 
measure, that is, the share of actual non-nostalgic essays among all essays classified as being non-
nostalgic). Although high recall and sensitivity are desirable, the distinction between non-nostalgic and 
nostalgic memories is challenging even for human coders (Szabó & Kiss, 2022); for that reason, we clarified 
our priorities in advance. 

 
The classifiers varied substantially in their performance (Table 1). The best performing classifier 

was logistic regression (f1 = .80). However, the logistic regression model classified only 57 of 291 (20%) 
of the nostalgic essays correctly. Naïve Bayes and support vector machine both performed worse. The 
second-best classifier, the random forest (f1 = .79), detected 252 of 291 nostalgic essays correctly 
(87%), suggesting nonlinear relations between the terms in the essays and participants’ state nostalgia. 
The random forest classifier was also better than the null model and more accurate than all the other 
classifiers, evaluating 67% of all essays accurately. Further, its recall was substantially better than its 
specificity. 

 
To judge the interpretability of the classifier, we inspected the top-10 features (i.e., words) via the 

vip package (Greenwell & Boehmke, 2020). Nostalgic (vs. non-nostalgic) essays referred more often to 
endurance (“forever,” “often,” “many”), childhood memories (“childhood,” “small,” “parents”), “people,” and 
pleasant times (“summer”). These findings dovetail with the view that nostalgia is a social emotion involving 
a sentimental affection and longing for the past (Sedikides, Wildschut, Routledge, et al., 2015). Because of 
its good performance on the f1 measure, superior performance in detecting nostalgia, overall accuracy, and 
interpretability, we proceeded with the random forest classifier. 
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Table 1. Performance of the Top Classifiers With Their Best Parameter Solution Based on 
Tuning. 

 
Null 

model 

Regularized 
logistic 

regression (with 
λ = .32, mixture 

= .60) 

Naïve Bayes (with 
Smoothness = .50 
Laplace = 1.38) 

Random 
forest (mtry 
= 12, min n 

n = 5) 

Support vector 
machine (cost 

= 1.25) 
Sensitivity 
(or recall) 

1 .20 .06 .87 .56 

Specificity 0 .80 .99 .23 .52 

Accuracy .30 .37 .33 .67 .55 

f1 .46 .80 .12 .79 .63 

ROC auc .50 .50 .61 .56 .55 

PR auc .65 .85 .79 .75 .78 

Note. ROC = receiver operating characteristic; PR = precision-recall curve; auc = area under the curve. 
Optimal parameters were identified via tuning. λ=regularization rate. Mtry = number of randomly 
sampled parameters at each split when trees are created. Min_n = minimum number of cases per split. 
All classifiers can range from 0 to 1, with 1 corresponding to a perfect classifier. Values of .50 represent 
a chance classification for all classifiers except the PR auc; here, a chance classification corresponds to 
the ratio of the positive to the negative class (in this database, this would be a PR auc of .70). Central 
evaluation criteria are used here to account for the imbalanced data set, and the theoretical priorities 
are in boldface.  

 
Classifier Evaluation 

 
Thirteen essays were classified as non-nostalgic and 88 as nostalgic by the random-forest classifier 

in the holdout evaluation data set. The accuracy measure indicated that 79% of the essays were classified 
correctly, and the area under the receiver operating characteristic (ROC) curve showed an overall good 
performance of the classifier (ROC auc = .76). The confusion matrix demonstrated that the overall good 
performance was due to success in detecting nostalgic compared with control essays: A total of 70 of 72 
nostalgic essays (97%) were classified correctly, whereas only 11 of 31 control essays (35%) were classified 
correctly. The overall accuracy (.78) was within the range described for other emotion classifiers in the 
literature (Asghar et al., 2019; Azim & Bhuiyan, 2018), and both the accuracy and f1 measure (.50) 
outperformed the null model (accuracynull = .30, f1null = .46) in the evaluation data. 

 
We attempted to validate our machine classification by creating a fully classified essay data set for 

manual validation. Thus, we ran the classifier on all essays (training and evaluation data) to obtain 
classification estimates for each essay (for similar approaches, see Giorgi et al., 2022; Youyou, Kosinski, & 
Stillwell, 2015). We classified essays when the classifier considered the respective class to be at least 70% 
likely. This practice allowed us to obtain a large enough database to compare essays classified as non-
nostalgic (n = 68) and nostalgic (n = 321) with the manual coding of the same essays as nostalgic or not 
(human–human intercoder agreement: 95%; see the supplementary material: https://osf.io/vb4qu). The 
machine classification and the human classification were significantly associated, χ²(1) = 36.10, p < .001. 
Posts perceived as non-nostalgic by the human coder had 2.01 times higher odds of being classified as such 
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by the algorithm, whereas posts perceived as nostalgic by the human coder had 2.05 times higher odds of 
being classified as such, percentage agreement = 67%. Performance of the classifier was consistent with 
prior research on emotion detection (e.g., Asghar et al., 2019; Azim & Bhuiyan, 2018). 

 
Despite the unsatisfactory specificity, we deemed our classifier applicable for three reasons: (1) 

prior qualitative work indicated that the recognition of non-nostalgic memories is challenging even for 
humans (Szabó & Kiss, 2022); (2) our own comparison between the perception of the essays as being 
nostalgic (or not) and a manual coding of the essays (supplementary material: https://osf.io/vb4qu) 
demonstrated that the task of recognizing non-nostalgic essays is challenging even for humans; and (3) our 
actual application context included substantially more heterogenous content in which memories (nostalgic 
or not) likely stand out more clearly. Thus, we continued with answering our research questions in the next 
step but added an extra step of additional manual validation (discussed next). 

 
Nostalgia in Populist Discourses 

 
Database 

 
We employed our classifier on a data set with 4,022 Facebook posts uploaded by the seven German 

parliamentary parties during 2019 (1 January–31 December). We obtained data via CrowdTangle, a public 
insights tool owned and operated by Meta. We collapsed post text, links, and image text for analyses, set all 
text to lowercase, and removed emojis. We also collected aggregated user engagement (i.e., likes, love emojis, 
comments, and shares) per post. We provided the absolute count of posts per party in Supplementary Material 
S5 (https://osf.io/vb4qu). We identified posts as nostalgic or non-nostalgic when they were classified with 
probabilities > .70. Of all posts, n = 646 (16.01%) were classified as nostalgic and n = 1,857 as non-nostalgic 
(46.17%). 

 
Validation 

 
For manual validation, we selected 5% of all Facebook posts classified as nostalgic and non-

nostalgic, respectively (n = 125). A trained human coder then classified each of them as nostalgic or non-
nostalgic. Agreement between the classifier and the human coder was reached in 82% of the cases. Of the 
104 posts classified as non-nostalgic by the human coder, 87 were classified as non-nostalgic by the 
classifier (specificity = .84%). Of the 21 posts classified as nostalgic by the human coder, 15 were classified 
as nostalgic by the classifier (sensitivity = .71), f1 = .57. Thus, the classifier performed even better in the 
application phase than in the development phase—likely due to the more heterogenous content within the 
political posts compared with the essays. The classifier did not simply classify all texts as nostalgic but did 
indeed distinguish between nostalgic and non-nostalgic themes. 

 
An inspection of the posts that were classified as nostalgic by the algorithm and perceived as such 

by the human coder indicated that the classifier detected a wide range of nostalgic themes. Nostalgic posts 
included personal recollections of deceased party members, memories of famous politicians of the past, as 
well as collective issues such as the alleged loss of the “free Internet” resulting from European policy 
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reforms, increased forest dieback, or far-right narratives of immigrants allegedly “overflooding” the 
heartland (see Supplementary Material S4, at https://osf.io/vb4qu, for additional explorations). 

 
Results 

 
RQ1 refers to whether the prevalence of nostalgia in political Facebook posts differs between 

political parties. The share of posts classified as nostalgic varied depending on party, χ²(6) = 346.43, p < 
.001 (Figure 3). Posts by the right-wing populist AfD (z) = 15.85, p <.001) and the left-wing party The Left 
(z = 5.85, p < .001), which has been described as “partially populist” by political scientists (Walter, 2007), 
were more frequently nostalgic than expected by chance. In contrast, posts by the eco-friendly, center left 
The Greens party (z = -3.40, p <.05) and the conservative CSU (z = -9.96, p < .001) were less frequently 
nostalgic than expected by chance (all other |z| < 1.96, ps > .05). Only posts by the AfD were more 
frequently classified as nostalgic (n = 149) than non-nostalgic (n = 58), odds-ratio (OR) = 2.57. For all 
other parties, posts were more likely to be classified as non-nostalgic than nostalgic, all ORs < 0.29. 

 
RQ2 refers to potential differences between political parties. We used term-frequency/inverse-

document-frequency analysis (tf-idf; Silge & Robinson, 2017) to address this question. This analysis yielded 
the most frequent terms contained in the nostalgic posts of each party that are not contained in the nostalgic 
posts of the other parties (i.e., the unique nostalgic terms). 

 

 
Figure 3. Nostalgic sentiment in German parties’ Facebook posts. 

Note. AfD = Alternative for Germany; CDU = Christian Democratic Union of Germany; CSU = Christian-
Social Union in Bavaria; FDP = Free Democratic Party; SPD = Social Democratic Party Germany. 
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Only nostalgic posts by the AfD referred to asylum seekers and perpetrators, tapping into 
homogenous national nostalgia narratives around the heartland (see Figure 4). In contrast, nostalgic posts 
by The Left party were characterized by references to a more caring time, with social housing and calls for 
a rental cap. Nostalgic posts by all parties referred to their own (present and past) politicians and the EU 
Parliament election of 2019. Some posts also referred to political programs such as basic pensions. Posts 
by the conservative Bavarian party CSU mentioned the state of Bavaria frequently, and posts by The Greens 
uniquely mentioned traditional craftmanship. 

 

 
Figure 4. Most frequent terms in nostalgic posts unique for single parties (TF-IDF). 

Note. AfD = Alternative for Germany; CDU = Christian Democratic Union of Germany; CSU = Christian-
Social Union in Bavaria; FDP = Free Democratic Party; SPD = Social Democratic Party Germany.  
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User Responses to Nostalgic Posts 
 

RQ3 pertained to the relation between nostalgia and user responses. A series of Wilcoxon’s tests 
indicated that posts that were classified as nostalgic with probabilities > .70 received more likes and love emojis, 
and were commented on and shared more often, than posts that were classified as non-nostalgic (Table 2). 

 
Table 2. User Engagement With Nostalgic Versus Non-Nostalgic Posts. 

 Non-nostalgic Nostalgic Wilcoxon’s 

 Mdn MaD Mdn MaD w p 

Likes 
272.0

0 
252.04 519.00 525.58 6263435 <.001 

Love 9.00 10.38 11.00 11.86 6245752 <.001 

Comments 
139.0

0 
149.74 248.5 257.23 6219873 <.001 

Shares 41.00 44.48 107.00 133.43 5987126 <.001 

Note. Mdn = median; MaD = mean average distance from the median. 
 

Discussion 
 

We broadened the literature by using supervised machine learning to investigate nostalgia in 
political communication. Our results confirm both the close association between populism and nostalgia 
observed previously (Menke & Wulf, 2021; Mols & Jetten, 2014; Smeekes et al., 2021), and ideological 
asymmetries characterizing this association (Jost, 2017). Consistent with prior work in a Hungarian context 
(Szabó & Kiss, 2022), the right-wing populist AfD expressed the most nostalgia in its Facebook 
communication, although The Left party also employed nostalgia frequently. Non-populist parties seldomly 
addressed nostalgic topics. 

 
Extending prior research on variation in the content of collective nostalgia (Lammers & Baldwin, 2020; 

Wohl & Stefaniak, 2020), we demonstrated that nostalgic narratives differed between parties. Only the AfD 
referred to a more homogenous, nativist society—the heartland (Taggart, 2004). Only The Left referred to a 
more prosocial and caring past. Consistent with prior experimental research in Germany (Menke & Wulf, 2021), 
users engaged more with nostalgic than non-nostalgic posts. Of note, nostalgia was unassociated with content 
sharing for Hungarian political Facebook posts (Szabó & Kiss, 2022). Thus, future research comparing the 
interplay of nostalgia and user responses in different contexts seems desirable. 

 
On a more abstract level, our study underlined the advantages of employing supervised machine 

learning in political-communication research (for similar arguments, see González-Bailón & Petchler, 2015; 
Scharkow, 2013; Stieglitz & Dang-Xuan, 2013). Extending relevant findings in communication science, we 
showed that using psychologically established procedures in line with functional and appraisal theories of 
emotions (Frijda, 1988; Nabi, 1999; Scherer, 2005) to build the ground-truth for emotion detection allows 
a rich depiction of emotions and a classifier performance comparable with that observed for hand-coded 
data. Although human coding remains the gold standard for perceived content in text data, vivid recall tasks, 
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like the one used in our study, are used frequently in psychological research (Ferrer, Grenen, & Taber, 
2015), making them a valuable data source for future classifier developments. 

 
Limitations and Directions for Future Research 

 
Our study had certain limitations. The ground-truth database was modest. Increasing this database 

is likely to strengthen the classifiers’ performance (González-Bailón & Petchler, 2015). Furthermore, such 
an increase would allow for more complex deep-learning algorithms, which might also boost performance. 

 
In addition, despite performing better than chance in detecting both nostalgic and non-nostalgic 

essays, our classifier performed overall unsatisfactorily regarding the detection of non-nostalgic text in the essay 
data. Although our induction procedure ensured internal validity, enhancing the database with unequivocally 
non-nostalgic content could strengthen classifier performance. Indeed, performance was better on the political 
data set, which included a larger variety of topics than the evaluation data set. Here the classifier agreed in 82% 
of posts with a human coder. Further, classifier performance is best on the same type of input on which it was 
trained. Thus, retraining our model on political Facebook posts likely further strengthens its performance. 

 
Finally, our examination of nostalgia in populist and non-populist communication pertained to a 

single country, Germany, and a single social network site, Facebook. Future investigations could focus on 
other countries and a larger variety of social media, as well as on traditional political communication, such 
as parliamentary speeches or political advertisements. 

 
Practical Implications and Conclusion 

 
Nostalgia confers several psychological benefits (Sedikides, Wildschut, Routledge, et al., 2015), 

ranging from individual well-being (Wildschut & Sedikides, 2022) to intragroup bonding (Wildschut et al., 
2014). It also helps people to manage existential anxieties and imbues life with meaning (Sedikides & 
Wildschut, 2019), while acting as a motivational force (Sedikides & Wildschut, 2020). National nostalgia can 
have broad-ranging consequences, depending on how it is used (Sedikides & Wildschut, 2019). We discussed 
research documenting the pernicious influence of national nostalgia (e.g., increases in prejudice) as used 
by right-wing populist parties. To prevent or offset such influence, one could instill another type of national 
nostalgia, focusing on a diverse and open past (Stefaniak et al., 2021; Wohl et al., 2020) or on memories 
of democratic periods (Elçi, 2021). At a minimum, taking nostalgia into account might help democratic 
political parties to increase engagement with their social media campaigns. 

 
Overall, we provided unique evidence for the interplay between populism and nostalgia and 

demonstrated the value of employing psychologically informed supervised machine learning in political 
communication research. 
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