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We derive a conceptual bridge between technical concepts from the deep learning 
literature and natural metaphors for international development. We start with a rather 
technical review of four of the characteristic traits of deep learning technologies: 
representation, reuse, robustness, regularization (4Rs of deep learning). Based on the 
empirical evidence of 24 case studies, we derive four characteristics of the use of AI4D 
that align with the four technological traits, namely development foci on local and distance 
intelligence, and mirrored and detailed reality representations. In isolation, each one of 
the identified issues presents a plethora of opportunities to contribute to international 
development, especially to the attainment of the Sustainable Development Goals. 
However, in combination, they create a clear tension between a looming threat of a 
hegemonic intelligence indoctrination pushed by global economies of scale and the 
potential promise to not only honor but also celebrate local diversity with the help of 
flexible AI designs. 
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In line with a long research tradition focused on the use of information and communication 

technology for development (ICT4D), we explore the role of artificial intelligence (AI4D). Information and 
communication technology (ICT) has long been recognized as an important tool for international 
development. Decades of thoughtful academic research, often grouped under the shortcut “ICT4D” (Heeks, 
2006, 2017; Unwin, 2009), has fueled multiple generations of national and international policy agendas 
(“eLAC Action Plans,” n.d.; “World Summit on the Information Society,” n.d.). This active line of research 
grew out of work often grouped under the term development communication, which focused on the diffusion 
of mass media in developing countries and goes back to work from some of the founders of today’s 
communication discipline in the social sciences (e.g., Schramm, 1979). 
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As the digital paradigm evolves, so must the focus of this research. The most prominent recent 
change has been a shift in focus, from the proliferation of communication (1970s‒1980s) and information 
(1990s‒2000s), to the extraction of knowledge from the resulting data. Every two to three years, humankind 
deals with more technologically mediated information than it had since the beginning of human history 
(Hilbert, 2015). The only way to deal with this information deluge is by fighting fire with fire: using digital 
machines to make sense of the information provided by digital machines. Therefore, we have started to 
outsource the important task of interpreting and filtering digital information to intelligent algorithms. 

 
In this study, we develop a framework that allows us to reason about the role of artificial intelligence 

(AI) for international development by considering the interplay between modern AI concepts and their 
potential applications. We start by discussing the characteristics of modern AI and then match these 
characteristics to opportunities and dangers of AI for international development. 

 
Our theoretical review of modern AI focuses specifically on deep learning techniques. We distill four 

main concepts, referred to as the 4 Rs of deep learning: representation, reuse, robustness, and 
regularization. Reviewing these concepts leads to natural metaphors for the potential role that AI can play 
to tackle pressing development challenges. We derive this conceptual bridge by an empirical review of 24 
case studies that illuminate how AI currently contributes to the fulfillment of nine of the United Nation’s 17 
Sustainable Development Goals (SDGs). We crystalize four general characteristics of the application of AI4D: 
(1) local intelligence, (2) distance intelligence, (3) mirrored reality, and (4) detailed reality. Each one 
matches conceptually with one of our 4 Rs of deep learning. 

 
Combined, we obtain a conceptual framework for AI4D that allows looking at international 

development from the perspective of the technical particularities of the deep learning paradigm. All the 
identified characteristics have obvious positive effects on development outcomes, but on second thought, 
their combination could also lead to some fundamental threats to developing countries. We finish our 
analysis with a reflection on such possible threats to global inequality. 

 
AI: The Theory 

 
We start with the historical context of AI and then advance to its general architecture, all with the 

goal of identifying some of its main characteristics. 
 

Current State of Affairs 
 
Private sector companies agree that the global market for smart machines was around US$15‒20 

billion in 2018 and that its contribution to the global economy is soon to reach several trillion (Bughin, 
Seong, Manyika, Chui, & Joshi, 2018; International Data Corporation [IDC], 2018). 

 
The leading role of AI in today’s economy is pushed by dazzling advancements. Deep neural nets 

have managed to reduce the word-error rate in speech recognition from 26% to 4% between 2012 and 
2016 (Lee, 2016), making them much better than human transcribers (Xiong et al., 2016). Deep 
convolutional neural networks identify skin cancer with accuracy that matches that of trained experts 
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(Esteva et al., 2017). When using this technology in a developing community that may not otherwise have 
access to healthcare, we see AI applications in real-life scenarios with real outcomes. The positive 
contribution of AI is not limited to one realm; we see its impact in medical advancements, human 
relationships, and an overall potential for social good. 

 
The electric grid is in the hands of AI (Ramchurn, Vytelingum, Rogers, & Jennings, 2012); three of 

four transactions on the U.S. stock market are executed by automated trading algorithms (Hendershott, Jones, 
& Menkveld, 2011); and one in three marriages in America begins online (Cacioppo, Cacioppo, Gonzaga, 
Ogburn, & VanderWeele, 2013), making intelligent algorithms an undeniable player in sexual mating, energy, 
and financial transactions. And this widespread impact is unlikely to slow down as ICT rapidly advances because 
of the proliferation and expansion of AI to fit developing communities and their unique needs. 

 
A Short History of AI 

 
Although all this progress seems to have happened in a historical blink of an eye, intelligent 

machines have occupied human thought for 2,000 to 3,000 years, from depictions of robotic creations in 
the Talmud and Homer’s Iliad. Most researchers place the birth of modern AI to the 1950s, related to 
Turing’s famous formulation of the “Turing test” (whether a human can distinguish between human and 
machine behavior), and the so-called Dartmouth workshop from 1956, an eight-week-long brainstorming 
session that informed many of the general directions in the field during the subsequent decades. Participants 
of this workshop, such as the AI pioneer Herbert Simon, predicted that “machines will be capable, within 
twenty years, of doing any work a man can do” (Schreuder, 2014, p. 419). Another attendant, the AI pioneer 
Marvin Minsky, agreed, writing, “Within a generation . . . the problem of creating ‘artificial intelligence’ will 
substantially be solved” (Schreuder, 2014, p. 419). 

 
By 1985, the global market for AI had reached more than $1 billion. During the 1990s and 2000s, 

the world of technological progress focused on the proliferation of information diffusion solutions by means 
of Internet connections, databases, and phones. This resulted in an information overload, and researchers 
started to look for computational solutions to make sense of the data deluge. The current breakthrough in 
AI dates back to a result from 2012, when Geoffrey Hinton and collaborators surprised the academic world 
by showing the power of so-called deep convolutional neural networks (in this case, for image classification; 
Allen, 2015). These are not based on expert systems fed with identified patterns (knowledge, grammar, 
decision rules, etc.), but on machine learning algorithms that discover patterns. 

 
Today’s AI: Machine Learning 

 
Traditional AI systems, called expert systems, focused on automating insights gained by humans. To 

recognize a car, one would teach the machine the rules that define a car (four wheels, certain size, etc.). In 
contrast, modern AI systems adopted a learning approach more akin to how children learn: by examples, not 
by rules. A child learns to distinguish cars from motorcycles not by evaluating a series of rules, but by seeing 
different examples of each. This aims at identifying new patterns in data, not to match patterns against a given 
decision rule. The ability of AI to build its own knowledge is known as machine learning (ML), and it allows 



4388  Supreet Mann and Martin Hilbert International Journal of Communication 14(2020) 

computers to make decisions that seem to be both situational and subjective. The resulting classification 
criteria are more flexible and natural than predefined rules (Halevy, Norvig, & Pereira, 2009). 

 
Today, this kind of ML has almost become equivalent with the term artificial intelligence. Machine 

translation is an epitome of this trajectory of AI. Since the 1950s, digital heavyweights such as IBM, MIT, 
DARPA, and others all worked on encoding the rules of grammar and vocabulary translation into expert 
systems, much like an automated textbook of translation among different natural languages. The results 
could, at best, be used to support, but not substitute, human experts. In 2006, Google Translate launched 
a statistical ML translation engine. Google Translate does not apply grammatical rules like an expert system 
would, but is fed with a bilingual text corpus of more than 150‒200 million words, and two monolingual 
corpora each of more than a billion words (Och, 2005). The machine learns the relationships itself. The 
result is that Google Translate now supports more than 100 languages at various levels and serves more 
than 500 million people daily. 

 
Future Outlook on AI 

 
Advancements of AI lead us to understand there are alternative understandings of intelligence 

distinct from human intelligence. It should not be surprising that we are discovering that the way 
evolutionary pressures designed human intelligence is just one of many possible implementations of a much 
larger and broader concept. Machines are currently discovering alternative ways to be intelligent as they 
are finding ways to promote learning outside traditional boundaries of human insight. This is the main driver 
behind the increasing complementarity between human and AI. 

 
Deep Learning Architectures 

 
Having established that modern AI is basically equivalent to ML, we now review some of the 

theoretical characteristics at AI’s most important implementation, so-called deep learning, or deep neural 
networks (DNNs; Goodfellow, Bengio, & Courville, 2016). We aim to identify technological characteristics 
that lend themselves to tackling development challenges. We focus on four concepts articulated herein as 
the 4 Rs of deep learning: representation, reuse, robustness, and regularization. We will then relate these 
four AI-related technological characteristics to our framework of AI on development dynamics. 

 
Deep Layers: Representation 

 
One of the primary ways that AI machines are able to understand the situational and subjective 

nature of data is through representational learning. Representation learning is a set of methods that allows 
a machine to be fed raw input and to discover, from this input, representations that are needed for 
classification (LeCun, Bengio, & Hinton, 2015). Deep-learning methods are essentially representation-
learning methods with multiple levels of representation that gradually result in representation at increasingly 
abstract levels. 

 
Traditional ML algorithms are fed with certain features that represent some raw data. For example, 

a doctor interprets a scan image and feeds the observed features into the machine (the machine receives a 
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representation of the image, not the image), which then makes suggestions for action (e.g., calculating the 
probability of requiring surgery). This requires doctors with specialization in medical imaging, which is costly 
and can be subjective. One solution is to use ML to discover not only the mapping from representation to 
output, but also the representation itself, which is called representation learning. Deep learning furthermore 
implies that the levels of features are learned from data and are not explicitly designed by human engineers. 
In other words, the machine is not only learning the data structure (traditional ML), but also part of its own 
high-level architecture. 

 
Representation learning depends on particular factors of variation that help to separate each unique 

factor of the representation (Goodfellow et al., 2016). One of the central problems with this approach is that 
in many circumstances, some of the factors of variation influence multiple pieces of data, making it necessary 
to separate the factors of variation and ignore the ones that are insignificant. Deep learning solves the problem 
of separating the factors of variation by “introducing representations that are expressed in terms of other, 
simpler representations” (Goodfellow et al., 2016, p. 5). For example, Figure 1 shows the example of face 
recognition, as has been done millions of times in social networks such as Facebook and Instagram. 

 

 
Figure 1. Schematic representation of face recognition through deep neural networks  

(images: Wikipedia.commons). 
 
 
Thus, a deep-learning architecture is essentially a multilayer stack of simple modules, which are 

subject to learning (LeCun et al., 2015). The classic example of a deep learning model is the feedforward 
deep network, or multilayer perceptron (Goodfellow et al., 2016). A multilayer perceptron is a function that 
maps some set of input values to output values using a series of hidden layers that extract abstract features 
from the input or visible layer (Goodfellow et al., 2016). As shown in Figure 1, different layers learn different 
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aspects of the whole, introducing flexible and robust modularity. To move from one layer to the next, a set 
of units calculate a weighted sum of their inputs from the previous layer and pass the result through a 
nonlinear function (LeCun et al., 2015). Backpropagation is often used to help achieve a goodness-of-fit 
optimum by giving a network the ability to form and modify its own interconnections. 

 
Multitask- and Transfer Learning: Reuse 

 
The important result of the multilayer, modular representation of knowledge is that it allows for 

better generalizations, as a “scheme for minimizing the generalization error of the prediction functions and 
deducing the biases with respect to the provided training set” (Yu, Zhuang, He, & Shi, 2015, p. 313). One 
can also focus on layer-by-layer training and then use the insights gained from one layer to improve tasks 
in another layer. The result is essentially a transfer of knowledge, whereas the modular nature allows for 
context-dependent adjustments without the need to start from scratch. 

 
The vast collection of methods referring to multitask learning shares those parts of the model across 

tasks that capture a common pool of structure. The underlying assumption is that among the factors that 
explain the variations observed in the data associated with different tasks, some are shared across different 
contexts. For example, image recognition DNNs share learned features about lines, eyes, and faces on lower 
levels (see Figure 1). Online recommender systems learn to transfer shopper preferences among books, music, 
and consumer electronics. “The notion of re-use . . . is . . . at the heart of the theoretical advantages behind 
deep learning, i.e., constructing multiple levels of representation or learning a hierarchy of features” (Bengio, 
Courville, & Vincent, 2013, p. 1802). When this idea is implemented in a semisupervised setting, it is often 
referred to as multitask learning (Goodfellow et al., 2016), whereas it goes under the name of transfer learning 
when implemented through supervised learning (Goodfellow et al., 2016).2 

 
This technique is extremely beneficial if there are significantly more data in one setting than in 

another, which seems useful when considering the inequalities typical for international development. The 
classical case in the literature is to train computer vision with images of house cats and then use the 
extracted features to detect wild and rarely appearing snow leopards (Yosinski, Clune, Bengio, & Lipson, 
2014). It can even be used to approximate unprecedented scenarios for which no label examples are 
available (so-called zero-shot learning; Goodfellow et al., 2016). 

 
Convolutional Neural Networks: Robustness 

 
Convolutional neural networks (CNNs) are one type of deep, feedforward network that is considered 

easy to train and generalize and is one of the most common implementations of deep neural networks 
(LeCun et al., 2015). CNNs are designed to process data that come in the form of multiple arrays, such as 

 
2 ML is said to learn supervised, if the desired output is already known. One trains the machine to convert 
certain input into certain output through trial-and-error supervision. With unsupervised ML, the machine is 
given a certain theoretical framework and is asked to pick up patterns. Traditional principal component 
analysis is among the oldest unsupervised learning algorithms. 
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a color image made up of a 2D grid containing various pixel intensities. They have been tremendously 
successful in practical applications. 

 
Convolutional nets are the greatest triumph of biologically inspired AI. They are based on the insight 

that some neurons respond to very specific patterns, and hardly to others, while being very robust and 
detail invariant when doing what they do (Hubel & Wiesel, 1968). Convolutional nets implement this by 
systematically making use of parameter sharing that involves at least two types of layers: convolutional 
layers and pooling layers. Whereas the role of the convolutional layer is to detect aggregations of features 
from the previous layer, the role of the pooling layer is to merge similar features into one. This way, even 
if an input image has millions of pixels, we can detect small, meaningful features with kernels that occupy 
only tens of pixels, and share these parameters. This is done by sliding overlapping windows of shared 
representation over the grid structure. 

 
The important result is that this particular form of parameter sharing in convolutional nets causes the 

layer to be equivariant to translation. This means that if the input changes, the output changes the same way. 
One obtains the same representation of some input, even if it occurs earlier or later, or if it occurs shifted to 
the one side or the other. For example, this allows it to detect if a face is in an image, without getting lost in 
the details of which direction it looks, what the background or context is, and so on (see Figure 1). For human 
development, the concept of equivariance ensures that different inputs are represented efficiently and can be 
detected even if they reappear in a highly context-dependent and volatile settings (e.g., development). 

 
Overfitting: Regularization 

 
The challenge of making learning both robust and flexible points to the main difficulty related to the 

output of ML: deciding when to stop learning. The algorithm might learn details that are particular to the 
specific data set, but are not generalizable. In computer science lingo, this is known as the problem of 
overfitting, which stands for the idea that the algorithm learned more details than it should have learned. 
“Overfitting literally means ‘Fitting the data more than is warranted’” (Abu-Mostafa, Magdon-Ismail, & Lin, 
2012, p. 119). It happens automatically with learning patterns and is often subjective. Often the final purpose 
of the application defines which aspects are warranted and which are noise; this is often a subjective decision. 

 
For the ML community, the most common way to deal with overfitting is known as regularization. 

“Regularization is any modification we make to a learning algorithm that is intended to reduce its 
generalization error but not its training error” (Goodfellow et al., 2016, p. 117). Regularization is a broad 
term that includes many different methods, most of them being approximate heuristics. As a result, 
“regularization is as much an art as it is a science” (Abu-Mostafa et al., 2012, p. 126). It is an implementation 
of the similarly hand-wavy concept of Occam’s razor, summarized by Einstein as “everything should be 
made as simple as possible, but not simpler” (O’Toole, 2011, para. 1). 

 
AI4D: The Practice 

 
Inspired by the achievements and architectures of modern AI systems, we now set forth to analyze 

how they relate to international development. We based our conceptualization of development on the United 
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Nations SDGs. We gathered 24 case studies of the use of AI for development. These case studies are 
presented in the online appendix and present a variety of viewpoints, with some case studies highlighting 
pilot projects or initial concepts and others showing actualized and tangible results. They address nine of 
the 17 different SDGs: Two address SDG.2 (zero hunger); 11 address SDG.3 (good health); three address 
SDG.4 (quality education); two address SDG.5 (gender equality); one addresses SDG.8 (economic growth); 
four address SDG.11 (sustainable cities); four address SDG.12 (responsible consumption and production); 
two address SDG.14 (life below water); and two address SDG.15 (life on land). Some of them simultaneously 
address several goals (see Table 1 and the online appendix). 

 
The method of case collection was based on random-walk and snowballing principles (starting with one 

example, which leads to related ones) of written reports of adequate case studies. This makes the sample 
nonrepresentative of actual cases of AI4D, but without a global travel budget, we were forced to work with cases 
that had previously received attention and provided written insights. A cursory online search of AI technologies 
shows that these cases are generally well known. We do not claim that the selection of case studies is exhaustive 
or comprehensive; however, they did serve the function of helping us translate the technological characteristics 
of the prevailing ML paradigm into important aspects of international development. 

 
While we analyzed the case studies according to the previously identified 4 Rs of deep learning, we 

realized that the collected case studies lined up with four general characteristics to frame the effects of AI 
on development dynamics (see Table 1). The first two refer to the location of information processing with 
AI, and the second two refer to the input and output of this processing with regard to empirical reality. 

 
Transferring intelligence: 
 
1. Local intelligence: AI systems can be autonomously applied locally, adjusting to local context 

and requirements. 
2. Distance intelligence: Modern telecommunication networks allow highly trained AI systems to 

be applied at a distance. 
 
Manipulating reality: 
 
3. Mirrored reality: AI systems allow the creation of digital twins of aspects of reality, which 

enhance our understanding and allow us to replicate aspects of reality. 
4. Detailed reality: The digital footprint provides ever more detailed maps of reality, and AI allows 

us to exploit the resulting details to foster development goals. 
 

As shown in Table 1, the match between the 4 Rs and these four groups is not perfect, and sometimes 
subjective. By design, the different characteristics are not orthogonal to each other, but overlapping. For 
example, mirrored reality can be implemented locally or at a distance. In the same sense, robustness can 
be applied to representation or reuse. 
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Table 1. Characteristics of Deep Learning and AI4D, With 24 Case Studies) and Corresponding 
SDG. 

 Representation Reuse Robustness Regularization 

Lo
ca

l 

CS1 (SDG.2): Climate 
& crops analytics 
CS2 (SDG.3): Pharma 
research engines 
CS3 (SDG.4): 
Individualized 
education 
CS4 (SDG.4): Hidden 
learning patterns 
CS5 (SDG.5): Gender 
equality 
CS6 (SDG.11): 
Sustainable cities 
CS7 (SDG.11): 
Smarter cities 
CS8 (SDG.12): Risky 
pipe detection 
CS9 (SDG.12): 
Demand irrigation 
CS10 (SDG.15): 
Timber conservation  

CS11 (SDG.3): 
Alleviating medical 
paperwork 

CS1 (SDG.2): Climate 
& crops analytics 

CS12 (SDG.8): 
Productivity enabler 
across sectors 

D
is

ta
nc

e 

 

CS13 (SDG.3): 
Malaria screening 
CS14 (SDG.2): 
Diagnostic support 
CS15 (SDG.2): 
Analyses of 
tuberculosis 
CS16 (SDG.2): 
Automated diagnosis 
CS9 (SDG.2): 
Cataracts detection 
CS17 (SDG.12): Real-
time water supply 
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M

ir
ro

re
d 

 

CS18 (SDG.3&4): 
Informing and guiding 
pregnancies and girls’ 
rights 

CS19 (SDG.2&12): 
Plant-based 
replication of animal-
based foods 
CS20 (SDG.11): Road 
repair 
CS21 (SDG.14): 
Ocean ecosystems 
CS22 (SDG.15): 3D 
model of Earth  

 

D
et

ai
le

d CS14 (SDG.3): 
Chemical compound 
research 

CS3 (SDG.4): 
Individualized 
education 

 

CS20 (SDG.11): Road 
repair 
CS21 (SDG.14): 
Protecting endangered 
species 
CS23 (SDG.3): 
Predicting 
cardiovascular disease 
CS24 (SDG.3): 
Avoiding unnecessary 
surgeries 

Note. See online appendix. 
 
 
While overlapping, a possible 3D representation would be redundant, given the natural one-to-one 

lineup of the 4Rs with the four AI4D concepts. Our goal was to identify a general outlook to frame the AI4D 
discussion, not to elaborate an exclusive, objective, and exhaustive classification scheme. The framework 
aims at relating technological traits with development characteristics. 

 
AI Representation for Local Intelligence 

 
One characteristic that we frequently found in case studies is the possibility to implement intelligence 

locally, using representation learning, which automatically embraces local conditions and necessities. This is 
very promising given that one of the most frequent critiques of international development work is the (often 
subliminal) “one size fits all” or “best practice” mentality (Tödtling & Trippl, 2005). Representation learning 
allows for the ad hoc training of autonomous agents that consider the particularities of local conditions in 
remote areas. The digital footprint provides constant input in the form of a steady pipeline that fuels new 
discoveries by exploiting regional variances, particularities, and dynamics. This promises to enable innovative 
mechanisms sourced from local conditions. Having an automated way to learn about local particularities (i.e., 
representation learning) allows local actors to identify ever more tailor-made solutions for unique local 
conditions, augmenting economic and social efficiency domestically. This can facilitate unique solutions for local 
challenges. 
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Climate and crop analytics. An emblematic case is the local use of a ML algorithm (adopted from 
neuroscience) for the analysis of weather and local rice crop data in Colombia to analyze the effects of 
climate change (CS1 [SDG.2], see Table 1). The results were highly localized and provided recommendations 
on the level of different towns, highlighting the adoptability of this technology within a local context. The 
foresight helped 170 farmers in Córdoba avoid direct economic losses of an estimated $3.6 million and 
potentially improve productivity of rice by 1–3 tons per hectare. 

 
Pharmaceutical research. Another case that shows the potential to learn tailor-made 

representations of knowledge that fits specific local contexts is Benevolent.ai, an AI that distills insights 
from the vast collection of pharmaceutical research. The vast majority of the increasing numbers of scientific 
papers published each day are unread and unknown to most scientists. After searching vast databases for 
a neurodegenerative disease, the AI recently suggested using compounds that researchers had never 
considered. Two of them unexpectedly worked better than the best available treatment drug at the time 
(CS2 [SDG.3]). There is the possibility that some pressing health problems faced by developing countries 
already have solutions, but without such AI, the remedy remains lost in the scientific information overload. 
This social good can only be made possible with technologies that are able to manage the vast amounts of 
existing information to create actionable responses for these specific communities that may not otherwise 
have the resources to do so. 

 
Education. In the realm of education, AI solutions allow us to automate education and tutoring 

systems, allowing for low-cost solutions at scale. Highly structured subjects especially, such as language 
learning, software programming, or quantitative analytical skills, can be automated, including grading and 
performance tracking. Learning AI systems allows for the massification of an individualized education 
experience for structured course work (CS3 and CS4 [SDG.4]), which can then be applied in a specialized 
or unique local context. 

 
Gender equality. Other ML technologies are being used to promote gender equality in the local 

workplace and the classroom via local intelligence. Doberman.io has employed ML and speech recognition 
to create an app that helps promote gender equality in the meeting room (CS5 [SDG.5]) by recording and 
analyzing speech during a meeting and then providing a visualization of speaker contribution by gender as 
the meeting progresses. The app aims to heighten awareness of the gender equality issue. Using this 
technology in communities where women have traditionally been marginalized may help to provide in-the-
moment awareness regarding gender equality. 

 
City sustainability. Much has been written about smart cities (in Latin America and beyond) and 

the application of cutting-edge AI to tackle urban challenges related to traffic, safety, and sustainability, which 
certainly falls into the category of localized intelligence (CS6 & CS7 [SDG.11]). HiBot employs an AI system 
designed to algorithmically locate where pipes are at risk of failure and employs inspection of pipes that have 
already been replaced by evaluating soil dynamics and electromagnetic forces coming from power lines (CS8 
[SDG.12]). In the U.S., it has already detected hundreds of thousands of water pipe bursts per year across 
the country. This allows for conservation of water through prevention of leaky pipes. The application applies 
the technology to local infrastructure conditions, providing specified outputs based on community needs. 
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Water/forest conservation. Naturally, efforts in environmental protection can also benefit from 
adjusting AI to local conditions. Ecological conditions are often too unique and complex to transfer models 
one-to-one. For example, AI was used to govern drip irrigation system work by inserting a network of ground 
sensors into the soil to discover plants’ irrigation needs, monitor demand, and optimize water use remotely 
(CS9 [SDG.12]). Neural nets were then used to effectively learn optimal irrigation schedules for the local 
conditions. The state government of Rio de Janeiro used ML on documents, databases, and satellite imagery 
to learn that more than 40% of the forest management operations in a certain area likely involved severe 
breaches of the law between 2007 and 2015 (CS10 [SDG.15]), showing just how adaptable these 
technologies can be for local communities. 

 
AI Reuse for Distance Intelligence 

 
Despite all tailor-made attention, which has certainly been neglected in many development projects 

in the past, it is also true that development dynamics contain a considerable common pool of shared factors. 
The arising synergies provide a fertile ground for the application of different kinds of multitask- and transfer 
learning methods. What we call distance intelligence is the ability for AI technologies to supplant resources in 
fields that were previously understaffed or underresearched, with the help of telecommunicated intelligence. 

 
Health/diagnoses. One of the pioneering applications of distance intelligence is the use of AI in 

the health sector, such as for automated distance education and distance diagnoses to treat a number of 
ailments, including congenital cataracts, tuberculosis, and breast cancer. This can be used to provide access 
to medical intelligence in remote and underserved regions, nationally or internationally. 

 
A total of 300–500 million cases of malaria illness occur annually, of which 1.1–2.7 million are fatal. 

In developing countries, the lack of access to accurate diagnosis is largely due to a shortage of expertise, 
coupled with a shortage of equipment. Findings of a recent survey carried out in Uganda show that only half 
of rural health centers have microscopes, and of that half, only 17% have staff with the training necessary 
to use the microscopes for malaria diagnosis (CS13 [SDG.3]). 

 
Image processing and computer vision techniques have been used to identify parasites in blood 

smear images captured through a standard microscope. Algorithms used for other imaging purposes, such 
as face detection, can be transferred to recognize the malaria plasmodia in blood smear images captured 
using mobile phones attached to portable microscopes (CS13 [SDG.3]). 

 
Google’s DeepMind Health project can be used to interpret test results and learn which types of 

treatments are most effective for different patients (CS14 [SDG.2]). Although DeepMind was founded in 
London with the immediate goal of streamlining the United Kingdom’s national health system, the technology 
has the potential to influence communities worldwide as it seeks to support an existing healthcare system 
and become a self-sustaining initiative. 

 
The use of AI to diagnose and process medical images does not have to be fully automated; it is 

also often used to complement the work done by medical professionals, helping to save time and eliminate 
costly misdiagnoses. Zebra Medical Vision (Zebra-Med) has created a service called Zebra AI1 that uses 
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algorithms to examine medical scans for just $1 a scan (CS14 [SDG.2]). The results are then passed on to 
radiologists, saving them time in making a diagnosis or requesting further tests. 

 
AI Robustness for Mirrored Reality 

 
The ability for AI to quickly learn new representations in different contexts in a robust way is 

perhaps one of the greatest promises of modern AI (Goodfellow et al., 2016). Many of the recent advances 
in AI allow for it to be used in a variety of new settings. The idea of robustness suggests that a shared 
representation of features can be examined from either the convolutional layer or the pooling layer. Because 
the convolutional layer detects aggregates of features and the pooling layer merges similar features, 
robustness allows one to examine similar or overlapping features either from above or below. The effect is 
that new cases do not exactly have to be identical to previous ones in order to be understood by the AI. 

 
What we call mirrored intelligence refers to a group of applications that replicate aspects of reality 

and thereby augment the information related to these aspects. This allows the machine to create additional 
meaning by cross-referencing related aspects and creating yet unseen scenarios on these aspects of reality. 
The ability to apply various applications requires that AI be both robust and adaptable in its managing of 
views and perceptions. 

 
Road repair. Autonomous cars are one of the most visible implementations. AI uses 3D maps to 

help vehicles make real-time decisions. By mapping scenarios on to the existing field, autonomous cars are 
able to reason among multiple options to determine the best course of action. Such applications require the 
robust and flexible processing of concepts, under equivariant translation. In an effort to improve safety, the 
same ideas can be applied to roads rather than cars, with information gathered (sometimes by drones, other 
times by car-mounted cell phone cameras) about road construction and maintenance (CS20 [SDG.11]). AI 
can be used not only to identify problems, but also to simulate new scenarios based on empirical driving 
behavior, leading to the development of new standards and infrastructure designs (CS20 [SDG.11]). 

 
Plant-based food replication. Going one step further, beyond mirrored and virtual realities, AI 

is also being used to replicate the design of real-world atoms- and molecule-objects. Food replication is 
being used to combat global hunger. NotCo developed an AI program called Giuseppe, which uses and 
replicates the molecular composition of animal-based foods to determine which vegetables would create a 
food with similar taste, texture, and even smell (CS19 [SDG2&12]). Not Mayo is made mostly from basil, 
peas, potatoes, and canola oil, instead of eggs and canola oil, but is said to taste and have a texture almost 
exactly like normal mayonnaise. The resulting products are economically cheaper and much less taxing on 
the environment than animal farming. 

 
Gender equality/girls’ rights. In many practical applications, the idea of mirroring reality is 

often implemented as a mix of local and distance intelligence. This shows that the categories in our 
classification system from Table 1 are not exclusive. An entire group of game-based simulations falls into 
this category. We studied two representative cases of this category (CS18 [SDG3&4]). For example, the 
Half the Sky Movement develops mobile phone simulation games to raise awareness of the general audience 
regarding issues that women and girls are facing. In nine minutes, women and girls play out the adventure 
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of managing a healthy and successful pregnancy, compressing the nine-month process into a short game 
experience, all guided by interactions with preprogrammed intelligent machines. 

 
AI Regularization for Detailed Reality 

 
Perhaps one of the most fundamental ways that AI is able to provide detailed insight on specific 

areas of development is by fine-graining our understanding of reality through analyzing unprecedented big 
data sources in a new way with greater nuance. Advancing into a more detailed representation of reality 
increases the risk of overfitting. The machine might learn particular aspects of a circumstantial situation 
that was unique and will never reoccur exactly in this way. Regularization allows the intelligent system to 
continue learning within specific contexts without overfitting to a specific situation. This allows a system to 
be more efficient while still accounting for the warranted details of the system input. 

 
Road repair/protecting endangered species. Collecting fine-grained detail has proved fruitful 

in a number of ways that all address development goals. By monitoring infrastructure, AI contributes to 
road safety and leads to new road designs that can influence the way drivers behave (CS20 [SDG.11]). If 
these insights are sufficiently regularized to be generalizable, it allows us, for example, to collapse 
ecosystem models in order to map dependence on subsistence fisheries, thereby fostering sustainable 
development (CS21 [SDG.14]). 

 
Predicting disease/avoiding unnecessary medical procedures. It is important to emphasize 

that the detailed data are necessary, but not sufficient to reap the benefits. Modern ML techniques, like deep 
learning, are necessary. For example, using the same data, CS23 (SDG.3) presents a case in which neural 
nets correctly predicted 7.6% more patients who developed cardiovascular disease than other more 
traditional statistical techniques. Given that 31% of all deaths worldwide are attributed to cardiovascular 
disease (World Health Organization, 2017), this suggests that 2.4% of all global deaths can be better 
predicted thanks to neural nets (an estimated 1.4 million deaths per year). Such accuracy can also be used 
to reduce healthcare costs. Our final case, CS24 (SDG.3), shows a situation in which ML was able to reduce 
the number of unnecessary surgeries for breast cancer by more than 30% compared with existing 
approaches. It is this combination of detailed data and the power of ML that allows for generalizing insights 
into new cases in a reliable way. 

 
Discussion: Development at the AI Crossroads 

 
We started with a historical and theoretical review of modern AI and identified four characteristics, 

the 4Rs of deep learning. Studying 24 case studies, we found that they align with four characteristics of 
international development. In isolation, each of them provides ample evidence for bright opportunities to foster 
the development agenda with AI, especially the SDGs. However, in combination, it turns out that they lead to 
a tension between global efficiency and local needs. We discuss the arising challenges in this final section. 
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Global Efficiency and Local Diversity 
 
In theory, the very nature of modern AI exemplifies the ideals of local context dependency and 

global coherence. Computer scientists meticulously balance representation learning of new patterns with 
multitask- and transfer learning of known patterns, and the regularization of noisy features with feature 
robustness despite varying details. The figurative balance between global synergies and local particularities 
is at the heart of the power of ML. Our application of these principles to the practice of international 
development not only provides an eloquent analogy, but also faces socioeconomic pressures in the form of 
cultural and political transaction costs, economies of scale, and social cohesion. The tension between global 
efficiency and local diversity is not necessarily contradictory, but establishes a tension that must be 
addressed to ensure that localized needs are not pushed aside for general productivity. 

 
Most ML is done within the industrialized context, given that the process can be very costly. 

Naturally, the resulting intelligence learns the patterns of the data it was trained on. Despite all theoretical 
ambitions of eradicating the one-size-fits-all model with flexible AI, economies of scale create a strong 
pressure to adopt local conditions to the imported AI behavior for the sake of economic efficiency. The result 
is a digital indoctrination of “one-AI-fits-all.” 

 
This starts with conflicting foci of the most urgent AI solutions. Different countries face different 

health epidemics. Priorities of developed and developing countries are not the same. Additionally, different 
countries face different variations of the same epidemic. Genetic mutations adjust to the genetics of the 
host, so an AI trained on cancer cells from hospitals in New York and Berlin might lead to dangerously 
confusing diagnoses when applied to remote regions of the developing world. Something similar accounts 
for many solutions that aim at improving safety. Roads are built differently in different regions of the world, 
so an AI trained in interpreting drone images from some regions might reach dangerously unreliable 
conclusions when economic efficiency urges their application to developing contexts. Needless to say, self-
driving cars trained in Shanghai and London would be utterly confused when entering many traffic situations 
of a developing metropolis in Africa or Southeast Asia. 

 
It is therefore important that when examining how today’s AI machines learn, we consider 

differences between different AI technologies and how these differences can influence their applicability in 
various situations. If a particular AI technology is more “humanlike” in its learning ability, maybe it is better 
suited for a particular application within the context of the 4Rs, such as representation, whereas a 
technology that is focused on multitasking may be more useful for reuse. While we have provided clear 
explanations of the 4Rs and highlighted how different case studies fit in these categorizations, parceling 
them apart in this way requires some subjectivity when deciding which of the 4Rs is most applicable in each 
case. The online appendix delves more deeply into the case studies and highlights the nuances of each case 
and its multifaceted qualities. 

 
History has provided countless examples where economic and cultural hegemony has led to the 

extinction of local values, culture, habits, and development goals. Although modern AI provides the 
theoretical possibility to celebrate diversity, such designs are not initially favored by economic incentives. It 
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is cheaper to reuse a one-size-fits-all solution. The arising threat is a global indoctrination of intelligence 
from the producer to the consumer of AI. 

 
Regulating International AI Regularization 

 
The design of global AI systems that balances the trade-off between global efficiencies and local 

contexts comes down to finding the line between those results that are generalizable and those that are 
not. Taking an AI that works in one context and trying to apply it to other contexts without considering 
differences and limitations is a clear case of overfitting. For the ML community, “regularization is our first 
weapon to combat overfitting” (Abu-Mostafa et al., 2012, p. 126). The term regularization is adequate for 
our purposes because it carries the metaphoric double-meaning of the need for regulation of a process that 
ensures global diversity in a world where AI solutions take an increasing share of all decisions. 

 
If economic principles favor the one-AI-fits-all model, economic incentives and social institutions 

would need to be designed to balance this pressure with context-dependent automation and the adoption 
of local needs. This presents an uphill battle against economic efficiency and therefore cannot purely follow 
market mechanisms. The ML community does something similar. Identifying shared parameters that fit 
many contexts is sometimes set as an a priori goal (e.g., Hinton, Srivastava, Krizhevsky, Sutskever, & 
Salakhutdinov, 2012). This “regularizes each unit to be not merely a good feature but a feature that is good 
in many contexts” (Goodfellow et al., 2016, p. 260). Of course, a solution that works for all cases is often 
as useless as one that works for none. 

 
Taking advantage of synergies while not neglecting local particularities is usually solved with a 

multilevel approach, and deep learning lends itself to it (see Figure 1). Different levels identify communalities 
and differences. Learning shared factors largely facilitates the adequate and noninvasive application of 
distance intelligence. For example, an AI that has learned the insight that “no one shall be subject to torture” 
(UN General Assembly, 1948) is already effectively restrained to guide decisions in questions related to 
labor- and women’s rights, and educational systems. 

 
It is therefore essential that one consider the potential negative impact that AI technologies might 

have on some of the SDGs, particularly those related to human rights. Raso, Hilligoss, Krishnamurthy, 
Bavitz, and Kim (2018) highlight many of the risks that AI might pose to human rights by stressing positive, 
negative, and indeterminate impacts that technologies in specific domains (such as criminal justice, 
education, and online content moderation) might have on particular human rights markers. For example, 
they highlight that introducing AI technologies in the criminal justice system has the potential to negatively 
impact an individual’s right to a fair public hearing and right to be considered innocent until proven guilty. 
Similarly, AI technologies that impact online content moderation (such as enforcing standards or quality of 
publications) might have negative consequences for freedom of opinion/information (Raso et al., 2018). 

 
In theory, AI could learn about common cultural, social, and political norms. It can be programmed 

to complement restricted search spaces for specific constituencies among different populations. Over the 
coming years, intelligent machines will inevitably learn the hierarchical architecture that constitutes the 
complex multidimensional preference structures of what we call global norms. The promise is that the result 
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will present a coherent, moral, and ethical framework, with a certain level of shared beliefs and values, 
while at the same time emphasizing diversity and multiculturalism. The hierarchical layers of deep learning 
are a natural way to encapsulate the representation of both generic human values and specific human 
customs and preferences. Modern deep learning AI provides a tangible way to implement and celebrate this 
naturally existing hierarchy in socially embedded human preference structures. 

 
While theoretically possible, the practical implementation of such nuanced hierarchical models faces 

the uphill battle against the brutal economic incentives offered by economies of scale of digital products. 
The silver lining is that, just like all other technologies before it, AI does not comply with technological 
determinism. It can be socially constructed (MacKenzie & Wajcman, 1999). This makes it especially 
important that we consider how to implement AI technologies. Policy considerations and regulatory 
frameworks govern how specific AI technologies might be implemented in differing contexts. For example, 
autonomous vehicles, which have the ability to severely cut down on automotive accidents, are governed 
by legal parameters, policy considerations, and even value systems as we are forced to consider what it 
means to be the “driver” and the nature of being “in control” of a vehicle (Acosta, 2018). 

 
A number of challenges related to AI application in the public sector exist. Wirtz, Weyerer, and 

Geyer (2018) highlight four major dimensions of AI challenges: AI technology implementation, AI law and 
regulation, AI ethics, and AI society. These dimensions provide us with important considerations, especially 
as we consider how AI can be applied in local contexts with communities that need different approaches. 

 
Global Negotiations and Local Efforts 

 
In this arising negotiation between global efficiency and local diversity, the only controllable variable 

for developing countries is the level of proactivity of their role. The question is about the weight they will bring 
to the anecdotal negotiation table regarding the hegemony of AI. The combination of our theoretical and 
practical analyses results in the hope that local communities will begin investing in building their AI capacity 
to avoid being swamped with solutions that may be inadequate and, in the worst case, damaging for them. 
Furthermore, the involvement of local communities is essential to ensure the success of the AI technologies. 
When participants who executed ICT4D programs were not included in the design of these programs, the 
project suffered from major failures despite being community-based and well planned (Brown & Mickelson, 
2019). To avoid a similar outcome with developing AI technologies, it is paramount that future research include 
community partners that would directly benefit from the technology in every step of the project. 

 
On the one hand, this is facilitated by cloud services. Many aspects of AI solutions are openly available, 

including deep learning suites such as Google’s TensorFlow and Facebook’s PyTorch. Even if developing 
countries do not produce the technology, they could use it to produce local knowledge, which is what matters 
most for reaping the benefits of AI4D. The reality in developing countries places many self-inflicted roadblocks 
in the way of this opportunity. This includes institutional factors and data scarcity. As one example, a small 
startup called BlackBox Solutions in Guatemala pursues the vision to take advantage of openly available tools 
like Google’s TensorFlow to adjust ML to local contexts. Unfortunately, its country’s legislation prevents it from 
implementing remote work models to employ programmers and from fundraising a round of capital (Sandel, 
2018). Even if those institutional hurdles are taken, their daily work often consists of trying to extract data 
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from PDF documents handed to them from local municipalities.3 It is ambitious to aspire to train globally 
competitive AI with such scarce and expensive data input. Ready-made imported solutions from developed 
countries might be more economically convenient. Although this study is an important qualitative first step in 
examining how AI can be used for global good, it does not place an emphasis on randomization and 
representation and is limited in its examination of AI use. We are looking forward to many more examples and 
case studies that in the future will shed more light on the nascent topic of AI4D. 

 
These and many other policy tools will play a crucial role in shaping the identified tension, and 

therefore the aspirations, of AI4D. Although each case study presents significant potential for furthering the 
goals of AI4D, each comes with its own set of limitations that are not discussed in this examination. Going 
further into the arising policy options is certainly beyond the scope of this study. It will require much more 
detailed and comprehensive consideration. This study aimed to present a general framework to approach the 
incipient discussion of the nascent field of AI4D. The discussion itself will accompany us for decades to come. 
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A 33-page appendix is part of this study and features details about the 24 case studies and their 

specific relationships to the United Nations Sustainable Development Goals. The online appendix is available 
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